
Devoir maison no 10 - Correction

Exercice 1. (d’après E3A PC 21 )

1. Justifier que la série
∑

n⩾1

(−1)n+1

n
converge.

Pour n ∈ N
∗, on note un =

(−1)n+1

n
. Il s’agit d’une suite alternée et la suite

(

|un|
)

n
= (1/n)n est

décroissante et de limite nulle. Ainsi d’après le critère spécial des séries alternées , la série
∑

n⩾1

(−1)n+1

n
converge.

2. Démontrer que l’on a :
+∞
∑

n=0

(

∫ 1

0
x2n(1 − x) dx

)

=

∫ 1

0

dx

1 + x
.

Pour n ∈ N, on note fn : x 7→ x2n(1 − x).

– Pour tout n ∈ N, la fonction fn est continue sur [0 ; 1] donc intégrable sur cet intervalle et a
fortiori sur ]0 ; 1[.

– Pour x ∈ ]0 ; 1[, la série géométrique
∑

x2n est convergente donc la série de fonctions
∑

fn

converge simplement sur ]0 ; 1[ vers la fonction x 7→ 1
1−x2 (1 − x) = �

�1−x

�
��(1−x)(1+x) = 1

1+x
.

– La fonction somme x 7→ 1
1+x

est continue (par morceaux) sur ]0 ; 1[.

– Pour tout n ∈ N, on a

∫ 1

0
|fn| =

∫ 1

0
x2n(1 − x) dx =

∫ 1

0
x2n − x2n+1 dx =

[

x2n+1

2n+ 1
−
x2n+2

2n+ 2

]1

0

=
1

2n+ 1
−

1

2n+ 2
− 0 =

(2n+ 2) − (2n+ 1)

(2n+ 1)(2n+ 2)
=

1

(2n+ 1)(2n+ 2)
.

Or 1
(2n+1)(2n+2) ∼

+∞

1
4n2 et la série de Riemann

∑ 1
n2 converge d’où, par critère d’équivalence des

séries à termes positifs, la série
∑
∫ 1

0 |fn| converge.

Ainsi, d’après le théorème de convergence terme à terme , la fonction somme x 7→ 1
1+x

est intégrable
sur ]0 ; 1[ (pour le savoir on n’avait pas besoin de ce gros théorème !) et surtout

+∞
∑

n=0

(

∫ 1

0
x2n(1 − x) dx

)

=

∫ 1

0

(

+∞
∑

n=0

x2n(1 − x)

)

dx =

∫ 1

0

dx

1 + x
.

3. Déterminer l’ensemble de définition de la fonction È : x 7→
+∞
∑

n=1

(−1)n+1x
n

n
.

On va discuter suivant la valeur de x.
• Si |x| < 1, on a

∣

∣

∣(−1)n+1 x
n

n

∣

∣

∣ ⩽
|x|n

n
⩽ |x|n (car n ⩾ 1). Comme |x| < 1, la série géométrique

∑

|x|n+1

est convergente donc par comparaison de séries à termes positifs, È(x) est bien défini.

• Si |x| > 1, on a
∣

∣

∣(−1)n+1 x
n

n

∣

∣

∣ = |x|n

n
−−−−−→
n→+∞

+∞ par croissances comparées (car |x| > 1). En

particulier la série
∑

(−1)n+1 x
n

n
est grossièrement divergente donc È(x) n’est pas défini.

• Pour x = 1, on reconnaît la série étudiée en Q1, È(1) est donc bien défini (étant donné la question
suivante, on pouvait s’en douter).

• Enfin, pour x = −1, on a (−1)n+1 (−1)n

n
= − 1

n
. On reconnaît le terme général de la série harmonique

qui est divergente donc È n’est pas définie en −1.

Bilan : la fonction È est définie sur ]−1 ; 1] .
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4. À l’aide la question 2, calculer È(1).

Remarque : 1 se trouve bien dans le domaine de définition obtenu à la question précédente, calculer

È(1) a bien du sens 1.

D’après les calculs effectués en Q2, on a vu que

+∞
∑

n=0

1

2n+ 1
−

1

2n+ 2
=

+∞
∑

n=0

(

∫ 1

0
x2n(1 − x) dx

)

=

∫ 1

0

dx

1 + x
. (♢)

Idée : L’intégrale de droite est facile à calculer et la somme de gauche va correspondre à È(1). On

travaille à cran fini pour ne pas avoir de problème de divergence.

Soit N ∈ N. On sépare les termes pairs et impairs en remarque que (−1)k+1 vaut 1 si k est impair et
−1 si k est pair :

2N+2
∑

k=1

(−1)k+1

k
=

2N+2
∑

k=1
k impair

1

k
−

2N+2
∑

k=1
k pair

1

k

=
N
∑

n=0

1

2n+ 1
−

N
∑

n=0

1

2n+ 2

=
N
∑

n=0

(

1

2n+ 1
−

1

2n+ 2

)

.

k = 2n + 1 si k impair et

k = 2n+ 2 si k pair

linéarité

En faisant tendre N vers +∞, ce qui est légal car la série de départ converge par Q1, on obtient

È(1) =
+∞
∑

k=1

(−1)k+1

k
=

+∞
∑

n=0

(

1

2n+ 1
−

1

2n+ 2

)

(♦)
=

∫ 1

0

dx

1 + x
=
[

ln|1 + x|
]1

0
= ln 2 − ln 1 = ln 2 .

1. En particulier, si à la question 3, vous avez trouvé un ensemble de définition ne contenant pas 1, l’énoncé de cette question

doit vous inciter à corriger votre réponse.
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Exercice 2. (d’après CCINP TSI 2024 )
On note E = R[X] et on pose

∀(P,Q) ∈ E2, ïP | Qð =

∫ 1

0

P (x)Q(x)

1 + x
dx.

1. Montrer que ï· | ·ð définit un produit scalaire sur E.

Remarquons tout d’abord que l’application est bien définie car il s’agit de l’intégrale d’une fonction
continue sur le segment [0 ; 1].

- Symétrie : Pour (P,Q) ∈ E2, on a ïP | Qð =

∫ 1

0

P (x)Q(x)

1 + x
dx =

∫ 1

0

Q(x)P (x)

1 + x
dx = ïQ | P ð.

- Linéarité à gauche : Soient (P1, P2, Q) ∈ E3 et ¼ ∈ R.

ï¼P1 + P2 | Qð =

∫ 1

0

(

¼P1(x) + P2(x)
)

Q(x)

1 + x
dx

= ¼

∫ 1

0

P1(x)Q(x)

1 + x
dx+

∫ 1

0

P2(x)Q(x)

1 + x
dx

= ¼ ïP1 | Qð + ïP2 | Qð .

linéarité de l’intégrale

- Linéarité à droite : Découle de la linéarité à gauche et de la symétrie.

- Positivité : Soit P ∈ E. On a ïP | P ð =

∫ 1

0

(

P (x)
)2

1 + x
dx ⩾ 0 en tant qu’intégrale d’une fonction

positive.

- Caractère défini : Soit P ∈ E tel que ïP | P ð = 0. D’après le calcul précédent cela signifie que
∫ 1

0

(

P (x)
)2

1 + x
dx = 0. Ainsi la fonction x 7→

(

P (x)
)2

1 + x
est continue, positive et d’intégrale nulle donc

nécessairement pour tout x ∈ [0 ; 1],

(

P (x)
)2

1 + x
= 0, i.e. ∀x ∈ [0 ; 1], P (x) = 0. Par conséquent le

polynôme P admet une infinité de racines (tout les réels de l’intervalle [0 ; 1]) donc il s’agit du
polynôme nul.

Finalement, ï· | ·ð est un produit scalaire sur E .

2. Les vecteurs 1 et X sont-ils orthogonaux pour ce produit scalaire ?

On a

ï1 | Xð =

∫ 1

0

1 × x

1 + x
dx

=

∫ 1

0
1 −

1

1 + x
dx

=
[

x− ln|1 + x|
]1

0

= 1 − ln 2 ̸= 0,

+1 − 1 au numérateur

puis simplification

donc les vecteurs 1 et X ne sont pas orthogonaux .

3. On note L
(

X2
)

le projeté orthogonal de X2 sur R1[X]. Justifier l’existence de deux réels ³ et ´ tels
que L

(

X2
)

= ³X + ´.

En tant que projeté d’un vecteur sur R1[X], on a L
(

X2
)

∈ R1[X] = Vect(1, X). Autrement dit

L
(

X2
)

s’écrit ³X + ´ avec (³, ´) ∈ R
2 .
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4. Que peut-on dire du polynôme X2 − L
(

X2
)

par rapport à l’espace vectoriel R1[X] ? En déduire que
(³, ´) vérifie

∫ 1

0

x2 − ³x− ´

x+ 1
dx =

∫ 1

0

x3 − ³x2 − ´x

x+ 1
dx = 0.

• En tant que projeté orthogonal de X2 sur R1[X], on a X2 − L
(

X2
)

∈ R1[X]⊥ . (Faire un dessin.)

• Comme (1, X) est une base de R1[X], on a X2 − L
(

X2
)

∈ R1[X]⊥ si et seulement si ce vecteur est
orthogonal à 1 et à X, ce qui équivaut à

{

〈

X2 − L
(

X2
)

| 1
〉

= 0
〈

X2 − L
(

X2
)

| X
〉

= 0

Q3
⇐⇒

{

〈

X2 − ³X − ´ | 1
〉

= 0
〈

X2 − ³X − ´ | X
〉

= 0

⇐⇒



















∫ 1

0

(

x2 − ³x− ´
)

× 1

1 + x
dx = 0

∫ 1

0

(

x2 − ³x− ´
)

× x

1 + x
dx = 0

⇐⇒

∫ 1

0

x2 − ³x− ´

x+ 1
dx =

∫ 1

0

x3 − ³x2 − ´x

x+ 1
dx = 0.
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Exercice 3. ⋆ (à l’origine oral X-ENS PC mais il n’y avait pas les questions 2 et 3.)
Soit (an)n une suite de réels. On suppose que la série de terme général an est absolument convergente. On

considère F : x 7→
+∞
∑

n=0

an

xn
.

1. Montrer que F est définie et continue sur [1 ; +∞[.

Pour tout l’exercice, pour n ∈ N, on pose fn : x 7→
an

xn
et on note I = [1 ; +∞[.

– Pour n ∈ N, par décroissante de fn sur I, on a ∥fn∥∞ = |an|. Comme la série
∑

|an| est supposée

convergente, la série de fonctions
∑

fn converge normalement et donc uniformément sur I .

– De plus, pour tout n ∈ N, fn est continue sur I (fonction usuelle à dénominateur qui ne s’annule
pas sur I).

Par théorème de continuité des séries de fonctions , on en déduit que F est définie et continue sur I.

2. Déterminer lim
+∞

F . En déduire que si F est intégrable sur [1 ; +∞[ alors a0 = 0.

• On a :

- f0 est constante égale à a0 donc ℓ0 = lim
+∞

f0 = a0 et pour n ∈ N
∗, on a ℓn = lim

+∞
fn = 0 ;

- d’après la question précédente, la série de fonction
∑

fn converge uniformément sur I et +∞ est
une borne de I.

Ainsi, d’après le théorème de la double limite , lim
+∞

F =
+∞
∑

n=0

ℓn = a0.

• Supposons que a0 ̸= 0. Comme lim
+∞

F = a0 ̸= 0, on a F (x) ∼
x→+∞

a0 = a0

x0 . Comme la fonction

x 7→ 1
x0 n’est pas intégrable en +∞ (Riemann), par équivalence de fonctions de signe constant, F n’est

pas intégrable en +∞.
Par contraposition, on obtient que si F est intégrable sur I alors a0 = 0 .

Pour la suite, on se place dans le cas où a0 = 0.

3. Montrer que la fonction x 7→
+∞
∑

n=2

an

xn
est intégrable sur [1 ; +∞[.

Notons S la fonction dont on cherche à montrer l’intégrabilité.

- Pour tout n ⩾ 2, fn : x 7→ an

xn
est intégrable sur I (Riemann).

- La série de fonctions
∑

n⩾2
fn converge normalement (par Q1) donc simplement sur I.

- La fonction somme S est continue (par morceaux) sur I car elle vaut F − f1 (F est continue sur
I par Q1 et f1 est continue sur I en tant que fonction usuelle).

- Pour tout n ⩾ 2, on a

∫ +∞

1
|fn(x)| dx = |an|

∫ +∞

1

dx

xn
= |an|

[

x−n+1

−n+ 1

]+∞

1

= |an|
(

0 −
1

−n+ 1

)

=
|an|

n− 1

(n⩾2)

⩽ |an|.

Comme par hypothèse
∑

|an| est convergente, par comparaison de série à termes positifs, la série
∑

n⩾2

∫ +∞

1
|fn(x)| dx est convergente.

D’après le théorème d’intégration terme à terme , on en déduit que la fonction somme S = F −f1 est
intégrable sur I.
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4. Déduire des questions précédentes une condition nécessaire et suffisante pour que la fonction F soit
intégrable sur [1 ; +∞[.

D’après la question Q2, pour que F soit intégrable sur I, il faut nécessairement a0 = 0. Sous cette
condition, d’après la question précédente, la fonction F − f1 est intégrable sur I. Par conséquent F
est intégrable sur I si et seulement si f1 l’est.
Or f1 : x 7→ a1

x
mais x 7→ 1

x
n’est pas intégrable en +∞ (Riemann). D’où f1 est intégrable sur I si et

seulement si a1 = 0.
Finalement, pour que F soit intégrable sur I, il faut a0 = a1 = 0. La réciproque est immédiate d’après
la question précédente. La condition nécessaire et suffisante recherchée est donc a0 = a1 = 0 .
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